Damage: Difference between revisions
Line 8: | Line 8: | ||
Mathematical formula for calculating the final damage is: | Mathematical formula for calculating the final damage is: | ||
<big><code> DMG<sub>f/ | <big><code> DMG<sub>f</sub> = DMG<sub>i</sub> x (1 + B<sub>1</sub> + B<sub>2</sub> + B<sub>3</sub> + B<sub>4</sub> + B<sub>5</sub> + B<sub>6</sub> + B<sub>7</sub> + B<sub>8</sub> + B<sub>9</sub> + B<sub>10</sub> + B<sub>11</sub>) x (1 - R<sub>1</sub> - R<sub>2</sub> - R<sub>3</sub> - R<sub>4</sub> - R<sub>5</sub> - R<sub>6</sub> - R<sub>7</sub> - R<sub>8</sub> - R<sub>9</sub> - R<sub>10</sub> - R<sub>11</sub>)</code></big> | ||
=== Secondary skills & spells === | === Secondary skills & spells === |
Revision as of 18:30, 14 July 2014
Damage is a general term for the amount of health loss a creature or a spell can cause to a single creature or to a creatures stack. If a creature suffers more damage than its current health, it is eliminated, while in a stack of creatures, the topmost dies. The remainder of the damage is dealt to the next one and so forth until all damage is dealt or the whole stack is eliminated.
Creature's ability to deal damage typically has a range, which means that it causes randomly chosen damage between the minimum and maximum value. Some creatures like Nagas do not have a damage treshold meaning they always do the same amount of damage. Creatures in a stack cause individual damages, and the combined damage of the stack is calculated by adding them together. However, the final damage can deviate from the combined damage greatly because of different additions and reductions, which are covered in the next section.
Spells damage dealing follow the same rules as mentioned above. However, they do not have a range of damage, but deal damage based on individual formulas. The formulas are always linear format: Ax+B, where x equals the value of spell power while A and B are variables defined by the spell. Damage from spell cannot be reduced, although some creatures have immunities against certain types of spells. Damage can be increased, if the target creature has natural vulnerability against the spell. For example, Water Elementals are immune to Ice Bolt and Frost Ring meaning they do not suffer damage from them, but take extra 50% of damage from certain fire school spells like Fireball.
Damage calculation of creature stacks
Mathematical formula for calculating the final damage is:
DMGf = DMGi x (1 + B1 + B2 + B3 + B4 + B5 + B6 + B7 + B8 + B9 + B10 + B11) x (1 - R1 - R2 - R3 - R4 - R5 - R6 - R7 - R8 - R9 - R10 - R11)
Secondary skills & spells
This base damage is modified by attack and defense skills, which are calculated as the sum of the attack and defense skills of heroes and creatures, adjusted for any native terrain bonuses and effects of spells and creature specialties (e.g., bloodlust, disease). When a creature stack attacks, its attack skill is compared with the defending creature stack’s defense skill. The attacker receives a 5% bonus to its base damage for every point that its attack skill is higher than the defender’s defense skill, and a 2.5% penalty for every point that it is lower. When attack and defense skill are equal, base damage is not modified .
The effects of attack and defense skills are capped. Attack skill can increase damage with no more than 300%, and defense skill can decrease damage with no more than 70%. These caps are reached, respectively, when attack skill is 60 higher or 28 lower than defense skill. Thus, attack and defense skills can modify a base damage of 100 to no less than 30 and no more than 400.
Variable | Value | Situtation | ||||||
---|---|---|---|---|---|---|---|---|
B1 | 0.05 x (A - D) | (capped at 3)Attacker's attack is skill greater than defender's defense skill | ||||||
B2 | 0.10 / 0.25 / 0.50 | Archery skill | ||||||
B3 | 0.10 / 0.20 / 0.30 | Offense skill | ||||||
B4 | 1.00 | Luck | ||||||
C1 | 0.05 x lvl x spec | Specialty (archery / offense) | ||||||
C1 | 0.03 x lvl / unit lvl | Bless | ||||||
C2 | 1.00 | Ballista does double damage | ||||||
C3 | 0.05 x hex | Cavalier/Champion | ||||||
C2 | 1.00 | Attacker is an opposite elemental type | ||||||
C2 | 0.50 | Attacker 'hates' the Defender | ||||||
C2 | 1.00 | Dread knight's double damage |
Example
No heroes are assumed to be present in the battle.
- 2 Nagas attack a stack of Pikemen.
- The Nagas have a single unit damage value of 20 and their Attack skill is 16.
- A Pikeman has 10 health and their Defense skill is 5.
- The base stack damage done by the stack of Nagas is 2 * 20 = 40.
- The Pikemen's Defense skill (5) is subtracted from the Nagas' Attack skill (16), which gives us 11, giving the nagas an att/def damage bonus.
- The dealt damage will after the att/def consideration thusly have the bonus percentage modificator of 5%, multiplied with the damage bonus number in this case, 11, resulting in 55% bonus percentage of the Nagas damage towards the Pikemen.
- So the damage is increased by a 55% increase and the nagas through superior attack skill have 155% damage on the Pikemen stack.
- The total damage thus is 40 * 1.55 = 62 damage points.
- 6 Pikemen will be killed, and the top Pikemen of the remaining stack will have 8 health left.
When the remaining (if any) Pikemen (attack points of 4) attack the nagas (sporting 13 points of defense):
- -22.5% damage would be dealt by the Pikemen to the 5 creature level higher naga chimera stack.
- The difference between the Pikemen attack (4) and the nagas defense (13) would mean 9 malus points with a malus point resulting in 2.5 % each malus point (the half of the bonus points).
- ((2.5)*-9)% is -22.5% damage the Pikemen can damage the nagas with.
Basic calculation
As mentiondd above, combined damage is calculated by adding all the individual damages of cretures in a stack together. Then the damage is modified by different variables in order to determine the final damage. The most significant factor is the difference of attacker's attack value and defender's defese value. They are determined by adding up attack skills of the attacking hero and attacking creature type, and by adding up defense skill of the defending hero and defending creature type. If the attacking creature's combined attack value is higher than defending creature's combined defense value, in other words if the difference is positive, then the attacking creature recieves +5% increase to its damage for every point the attack value is higher up to 60 points, +300%. If the difference is negative, then the attacking creature recieves -2.5% penalty for its damage for every point the attck value is lower up to 28 points, -70%. If the difference is 0, then the creature recieves no bonuses or penalties.
It should be noted, that there has been some debate wheter the bonus is 300% or 400%. To clarify this issue, the bonus is +300% but the damage is 400% compared to non-modified. To phrase the same question mathematically, bonus of +300% is "1 + 3.00 x 1" and the damage of 400% is "1 x 4.00" – in the end, they are equivalent.
Secondary skills & spells
This base damage is modified by attack and defense skills, which are calculated as the sum of the attack and defense skills of heroes and creatures, adjusted for any native terrain bonuses and effects of spells and creature specialties (e.g., bloodlust, disease). When a creature stack attacks, its attack skill is compared with the defending creature stack’s defense skill. The attacker receives a 5% bonus to its base damage for every point that its attack skill is higher than the defender’s defense skill, and a 2.5% penalty for every point that it is lower. When attack and defense skill are equal, base damage is not modified .
The effects of attack and defense skills are capped. Attack skill can increase damage with no more than 300%, and defense skill can decrease damage with no more than 70%. These caps are reached, respectively, when attack skill is 60 higher or 28 lower than defense skill. Thus, attack and defense skills can modify a base damage of 100 to no less than 30 and no more than 400.
Variable | Value | Situtation | ||||||
---|---|---|---|---|---|---|---|---|
B1 | 0.05 x (A - D) | (capped at 3)Attacker's attack is skill greater than defender's defense skill | ||||||
B2 | 0.10 / 0.25 / 0.50 | Archery skill | ||||||
B3 | 0.10 / 0.20 / 0.30 | Offense skill | ||||||
B4 | 1.00 | Luck |
B1 | 0.05 x (A - D) (capped at 3) | Attacker's attack is skill greater than defender's defense skill |
B2 | 0.10 / 0.25 / 0.50 | Archery skill |
B3 | 0.10 / 0.20 / 0.30 | Offense skill |
B4 | 1.00 | Luck |
Attacker is a shooter Archery Skill bonus, additive with artifact bonuses if Archery skill present
B2 Attacking hero has Archery specialty 0,05 * Hero level * Archery bonus
Attacking hero has Offense specialty 0,05 * Hero level * Offense bonus
Attacker is a Ballista, does double damage 1
1
Attacker is a Cavalier/Champion 0,05 * hexes traveled
Attacker is an opposite Elemental type 1
Attacker 'hates' the Defender 0,5
Dread knight's double damage 1
Bless specialty Hero, Bless is cast 0,03 * Hero level / Unit level
Example
No heroes are assumed to be present in the battle.
- 2 Nagas attack a stack of Pikemen.
- The Nagas have a single unit damage value of 20 and their Attack skill is 16.
- A Pikeman has 10 health and their Defense skill is 5.
- The base stack damage done by the stack of Nagas is 2 * 20 = 40.
- The Pikemen's Defense skill (5) is subtracted from the Nagas' Attack skill (16), which gives us 11, giving the nagas an att/def damage bonus.
- The dealt damage will after the att/def consideration thusly have the bonus percentage modificator of 5%, multiplied with the damage bonus number in this case, 11, resulting in 55% bonus percentage of the Nagas damage towards the Pikemen.
- So the damage is increased by a 55% increase and the nagas through superior attack skill have 155% damage on the Pikemen stack.
- The total damage thus is 40 * 1.55 = 62 damage points.
- 6 Pikemen will be killed, and the top Pikemen of the remaining stack will have 8 health left.
When the remaining (if any) Pikemen (attack points of 4) attack the nagas (sporting 13 points of defense):
- -22.5% damage would be dealt by the Pikemen to the 5 creature level higher naga chimera stack.
- The difference between the Pikemen attack (4) and the nagas defense (13) would mean 9 malus points with a malus point resulting in 2.5 % each malus point (the half of the bonus points).
- ((2.5)*-9)% is -22.5% damage the Pikemen can damage the nagas with.